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ABSTRACT
Recently, Cardwell et. al. proposed the BBR algorithm to
improve on TCP variants for congestion control. In contrast
to packet loss based congestion control algorithms, BBR at-
tempts to operate at the optimal operating point of a band-
width constrained network where the delay is minimized and
throughput is maximized. However, BBR is in its early stage
and has numerous shortcomings. We examine poor perfor-
mance on throughput in long latency networks in detail. We
survey three different techniques from hybrid systems liter-
ature, including identifying Piecewise Affine systems, Max
Min Plus Scaling systems, and the Min Plus service curve
framework from the network calculus literature. We develop
an analytical explanation of the performance degradation for
longer latencies and design a steady state model for BBR in
the network calculus framework. Our analytical explanation
also suggests two possible fixes to improve BBR throughput
in long latency networks.

1. INTRODUCTION
In the last few decades as memory has become cheaper,

network buffers have increased in size. The increased buffer
size means that packet loss is not an effective signal of con-
gestion. Yet most traditional TCP congestion control algo-
rithms use packet loss as a signal nonetheless. When large
buffers absorb excess packets, packet loss can occur well af-
ter the network becomes congested and packet loss-based
congestion control algorithms can have significant perfor-
mance degradation.

In order to address this shortcoming of packet loss based
congestion control algorithms, Cardwell et. al. propose a
congestion algorithm based on accurately measuring the Bot-
tleneck Bandwidth and Round-trip propagation time, or BBR
[4]. BBR is a simple state machine that alternates between
measuring the bottleneck bandwidth and the round trip prop-
agation time. Packets are sent at a rate informed by these
two quantities. In contrast to TCP Cubic, BBR has higher
throughput even at large packet loss rates, and lower laten-
cies [4]. While BBR achieves its goal of keeping buffers
minimum, TCP Cubic fills buffers resulting in a delay that
increases linearly with buffer size [4].

However, BBR’s initially promising results invited scrutiny.

Recent studies demonstrated critical shortcomings in BBR.
[10] showed that multiple BBR flows can each overestimate
their fair share of the bottleneck bandwidth, resulting in over-
load, which can lead to RTT unfairness, queue buildup, in-
creased latency, and massive packet loss. Other works have
reported similar phenomena through detailed empirical anal-
ysis [2, 11, 17]. [2] specifically studies BBR’s performance
in cellular networks where link delays can be much longer
than in standard networks.

These papers largely fall into the category of empirical
analysis. While [10] pays more attention to the BBR state
and measurement dynamics, other works treat BBR as a black
box and study relevant metrics like external throughput, de-
lay, and queue sizes. To the best of the author’s knowledge,
no work has attempted to construct a model of the BBR state
dynamics, despite Cardwell et. al’s contention that “BBR is
a simple instance of a Max-plus control system” [4].

In this paper, we take a first step to constructing an analyt-
ical model. We investigate three different approaches: a data
driven Piecewise Affine (PWA) model (Section 3), an ana-
lytically constructed Max Min Plus Scaling (MMPS) model
(Section 3), and another analytically constructed model us-
ing the Network Calculus framework (Section 4). We use
the Network Calculus framework to construct a closed loop
model of BBR steady state dynamics (Section 5). Following
model construction, we use the model to characterize BBR
performance and tradeoffs (Section 6). Finally, we compare
the model predictions to empirical observations (Section 6).

2. PROBLEM STATEMENT
One of BBR’s shortcomings is significant performance degra-

dation on networks with longer latencies. We present a sim-
ple experiment to show this. Consider a three node network
connected as

Node 0⇐⇒ Node 1⇐⇒ Node 2

where a source server (Node 0) is connected to a destination
(Node 2) via a middle router (Node 1). The 0-1 link is fixed
to be a 15Mbps bandwidth link with 10ms of delay. The 1-2
link has varied bandwidth B and delay D, but B is always
less than 15Mbps so that it is guaranteed to be the bottleneck.
B is varied from 0.1 to 1 Mbps whileD is varied from 1ms to
1.5 seconds. The results are shown in Figure 2, which shows
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Figure 1: Latency (D) vs Throughput (Mbps)
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Figure 2: Latency (D) vs Bottleneck Utilization (%)

throughput degradation to 60% of the bottleneck utilization
when latencies are on the order of 1 second.

An intuitive explanation is easy to find after a brief exam-
ination of the BBR dynamics. In the steady state, BBR al-
ternates between spending 10 seconds in the ProbeBW state
sending at the estimated full capacity, and spending 0.2 +
RTTtrue seconds in the ProbeRT state, where the window is
restricted to just 4 packets. As latencies increase, RTTtrue in-
creases, and so BBR spends a much higher proportion of its
running time with a window of just 4 packets.

While this specific problem may be easily resolved, the
lack of a precise analytical model makes answering other
questions more difficult. How are queue sizes affected? Do
longer latencies amplify measurement errors? To answer
these questions as well as our originally formulated problem,
we seek a more definitive model.

3. HYBRID SYSTEMS APPROACHES

3.1 Overview
Hybrid systems are a class of systems that include contin-

uous and discrete dynamics, or intuitively, systems that can
both flow and jump. Typically, the continuous dynamics are
described using differential equations while the discrete dy-
namics are modeled by a finite state machine. Researchers
have studied a huge variety of hybrid systems over the years,
though many are equivalent to one another under some min-

imal assumptions [9, 19].
The benefit of using hybrid systems over more general

nonlinear models (such as recurrent neural networks) is that
we can apply traditional control theoretic concepts for steady
state analysis. Over the past few decades, traditional con-
trol theoretic methods and concepts like Lyapunov stability,
reachability, and Poincaré maps have been mapped to hy-
brid systems [19]. Hybrid systems are especially compelling
for modeling BBR since BBR includes both a discrete state
machine and approximately continuous dynamics for packet
throughput.

We explore two hybrid systems. The Max Min Plus Scal-
ing (MMPS) framework is a superset of the Max Plus frame-
work. Thus, any system realizable in the more restrictive
Max-Plus framework (consisting of just the maximum and
addition operations) is also a valid MMPS system. Card-
well et. al declare that BBR is a “simple instance of a Max-
plus control system”, so this framework is a reasonable first
choice. The second approach is to learn a data driven Piece-
wise Affine system model. Such an approach would elim-
inate the costly exercise of manually constructing a model
while still yielding a structured model for control theoretic
analysis. Unfortunately, as we will show in the subsequent
sections, both methods face significant shortcomings.

3.2 Max Min Plus Scaling (MMPS) Systems
A Max Min Plus Scaling (MMPS) system is a discrete time

dynamical system

xt−1 = g(xt)

f := xi|α|max (fk, fl) |min (fk, fl)| fk + fl | βfk

where f is a recursively defined MMPS expression using
the operations of scalar multiplication, maximum, minimum,
and addition. g is a vector valued function where gj is an
MMPS expression of the form f .

We were unable to satisfactorily construct such a model
using the most common definition of Max-Plus systems [4].
Our approach followed that of Baccelli et. al., which ex-
plicitly models the arrival times of the last W packets in a
state vector [3]. W is set to be the maximum possible size
of the congestion window. This results in a max plus linear
system of the form Z(n) = Aw(n)Z(n − 1) where Z is a
concatenated vector of packet arrival times and Aw is a ma-
trix describing the system evolution for the packet n with a
congestion window of size w. The details of this model are
described in Appendix A.1.

Unfortunately, there are three major shortcomings with the
approach. Firstly, BBR’s bandwidth estimation process is
not realizable as an MMPS expression, let alone as a Max-
Plus operation. This makes dynamically modeling window
size challenging. Baccelli et al. avoid this challenge because
they study TCP Reno and Tahoe, which both have simpler
window dynamics that can be precomputed for an n packet
sequence [3]. It may be possible, though certainly trickier, to
compute the window sequence for BBR. However, we will



show in Section 4 that a service curve framework provides a
mathematically concise approach for modeling window dy-
namics as a better alternative.

The second shortcoming is that the scale of our analysis
is theoretically limited by the complexity of algorithms for
studying Max Plus (and MMPS) systems. Although max-
plus systems can be interpreted as timed processes on graphs,
the relevant graph algorithms are too slow. Computation of
max-plus eigenvalues, which is useful for throughput analy-
sis, has time complexity O(W 2 logW ) in our setting [18].
At the bandwidth limits we are interested in, this time com-
plexity pushes the limits. In contrast, the Network Calculus
framework presented in Section 4 is mathematically concise
and can be parameterized efficiently.

Finally, the max-plus framework lacks high quality soft-
ware tooling. The MATLAB toolbox I used is prone to both
bugs and large constant factors in the algorithms’ implemen-
tation [18]. On a few different systems, computing the eigen-
value of the max-plus system entered an infinite loop. A
tremendous benefit for practitioners could be achieved with
the creation of a high performance, well tested software li-
brary for modeling and manipulating Max Plus systems.

3.3 Piecewise Affine (PWA) Systems
PieceWise Affine (PWA) systems are dynamical systems

with a fixed number of n modes, where for each mode i ∈
[n], the dynamics are specified by a Linear Time Invariant
system, with the mode determined by which portion of the
state and input space the system is in. Formally,

x(t) = Aix(t) +Biu(t)

y(t) = Cix(t) +Diu(t)

where the system is in mode i if
[
x(t)
u(t)

]
∈ Ωi; Ωi is a convex

polyhedra and the set {Ωi} partitions the entire state/input
space. In our experiments, we use discrete timesteps and the
state space x consists of observations at previous timesteps,
forming an autoregressive system. This special case is known
in the literature as PWARX, although this distinction is not
especially important for our work here.

The PWA systems identification problem using global op-
timization is NP-hard. Some approaches, such as in [16],
approximate the global optimization problem resulting in a
polynomial complexity mixed integer quadratic programming
problem, but this is still too costly for the scale we need.

In practice, heuristic approximations that result in subop-
timal solutions are good enough. I examined two of these
methods. Lauer proposes k-LinReg which uses the k-means
clustering algorithm to develop a heuristic approximation of
the partition {Ωi} followed by regression to identify the dy-
namical system [13]. Lauer et al. also suggest using the
Multilevel Coordinate Search (MLCS) algorithm combined
with sequential quadratic programming to minimize an error
objective [14].

However, both methods struggle to recover the true under-
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Figure 3: Latency (D) vs Throughput (Mbps)

lying modes using solely packet throughput data. An exam-
ple of this failure is in Figure 3 where one can see that k-
LinReg with k = 2 identifies the ProbeBW states beginning
at time t = 25 and t = 45 as two different modes. In 5 tri-
als across modes ranging from 2 to 5, there was not a single
instance where k-LinReg or MLCS could assign ProbeBW
states the same mode and correctly distinguish the ProbeBW
and ProbeRTT states as two different modes. Both methods
were tested from k = 2 to k = 5. While ideally only two
modes would be identified, extra modes were added for flex-
ibility to capture transition dynamics.

3.4 Conclusion
Despite their initial failures, hybrid systems seem promis-

ing for modeling network traffic flow, which often consist of
discrete state transitions along with approximately continu-
ous dynamics for packet throughput. The MMPS framework
may not be flexible enough for our work, but the PWA ap-
proach seems usable. The main problem in the data driven
approach presented here is that learning a dynamical system
becomes much more challenging without also using internal
state measurements.

In real systems, state transitions can be driven by internal
state machines whose operations are not immediately visible
from external metrics like packet throughput. In traditional
control parlance, we do not have fully observable systems
but we still want to recover a full system model. In this
setting, identifying an accurate hybrid systems model would
require both careful data collection and a deliberate effort to
appropriately configure the state automaton when possible.
This may be a worthwhile exploration for future research.

4. NETWORK CALCULUS IN THE MIN PLUS
FRAMEWORK

The Network Calculus framework, first introduced in [6]
and [7], provides a method for studying network flows math-
ematically. In comparison to the MMPS model studied ear-
lier, we can concisely represent packet flow dynamics on
large networks through the use of service curves, the key el-
ement in the Network Calculus framework.



4.1 Service Curves
The service curve is at the heart of the Network Calculus

framework. We define a service curve x is a non-decreasing
function x : R+ → R+ ∪ {+∞}. x(t) is defined as the
number of bits that have arrived at (or left) a network ele-
ment in the time interval [0, t) (the definition varies across
the literature, but the concept is the same). In theory, a ser-
vice curve can be any arbitrary nondecreasing function, but
in practice, we need just a few different types of piecewise
linear functions. We will also adopt the convention that we
only study causal service curves x, a service curve that satis-
fies x(t) = 0 for all t < 0. We now introduce two classes of
service curves.

4.1.1 Delay service curve δd(t)
Define δd(t) as the piecewise function

δd(t) :=

{
t ≤ d 0

t > d +∞

δd(t) models a delay element of d seconds. Of course in
practice, a network element cannot forward infinite data in
arbitrary time as δd implies; we will show how to combine
δd with other service curves to realistically model a network
link.

4.1.2 Bandwidth curve λb(t)
Define λb(t) as the linear function λb(t) := bt where b

is a bandwidth rate of the number of bits per second. The
definition is quite intuitive, clearly the amount of data we can
send through a bandwidth constrained link over total time t
is precisely the product of the bandwidth rate b and the total
time t.

4.2 Min Plus Algebra
The most general form of the Min Plus Algebra (analogous

to the Max Plus algebra introduced earlier) is over an arbi-
trary set D equipped with the⊕ and⊗ operations, forming a
tuple called a dioid. The tuple (D,⊕,⊗) is required to meet
properties of a Min Plus algebra. Although out of scope for
this report, a full description of the Min-Plus Algebra can be
seen in [8].

We focus on defining the Min Plus algebra over service
curves equipped with the binary ⊗ and ⊕ operations. These
operations can be used to model the interactions of different
network elements. The two operations ⊕ and ⊗ on service
curves can be defined as follows:

(x⊕ y)(t) := x ∧ y = min{x(t), y(t)}
(x⊗ y)(t) := x ∗ y = inf

s:0≤s≤t
{x(t− s) + y(s)}

The ⊕ and ⊗ are the point wise minimum and convolution
with infimum respectively. For clarity, instead of using the
notation for the Min-Plus framework ⊗ and ⊕, we will use
the operations in R. That is, we will use x ∧ y to describe
x ⊕ y, the pointwise minimum, and x ∗ y to denote ⊗, the

convolution using inf .

LEMMA 1. Suppose β1 and β2 are the service curves of
network elements S1 and S2 in sequence. Then β1 ∗β2 is the
service curve of the combined concatenated elements.

PROOF. Lemma 1 restates Theorem 1.4.6 from Le Boudec
and Thiran. See [15] for the theorem and proof.

4.2.1 A delay and bandwidth constrained network link
Now that we have defined the convolution operation ∗, we

can define the service curve of a network link constrained
by both a delay d and a bandwidth b. We denote this ser-
vice curve Ld,b(t). Ld,B(t) = (δd ∗ λb)(t) by application of
Lemma 1. Observe that Ld,b(t) is defined as

Ld,b(t) :=

{
t ≤ d 0

t > d b(t− d)

The definition is intuitively clear from how we’d expect a
delay and bandwidth constrained service curve to function.
We leave a more detailed explanation of how Ld,b(t) arises
from the convolution δd ∗ λb due to Lemma 1 in Appendix
B.1.

4.2.2 A sequence of delay and bandwidth constrained
network elements

Given a sequence of network elements S1,S2,S3, ...Sn
with service curves Ldi,Bi

for the network element Si, the
concatenated service curve is LD,B where D =

∑
i di and

B = mini{bi}. The proof follows from applying Lemma 1
to a sequence of delay and bandwidth constrained network
links. This brief observation highlights an important feature
of service curves (and Lemma 1) - we can abstract an entire
sequence of n network elements {Si} just by performing an
n-fold convolution to get a service curve for the combined
element S .

4.3 Quality of Service (QoS) Metrics
Since we can abstract concatenated network elements as

a single element, we can study the properties of the overall
network by studying the service curve of the combined ele-
ment S. Let S have an input (arrival) service curve α(t) and
output (departure) service curve β(t). I now present three
different QoS metrics on S.

4.3.1 Windowed Average Throughput
Suppose we have a window of W seconds. Define the

windowed averaged throughput as

TptW (t) :=
β(t)− β(t−W )

W

TptW (t) represents the average throughput over the W sec-
onds preceding t. Additionally, we denote Tpt(t) := Tptt(t)
or the throughput averaged over all time.

4.3.2 Input-Output Delay
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Figure 4: Model of BBR window flow controller in closed
loop system

The delay as a function of time is defined as

Dα,β(t) := inf{s ≥ 0 : α(t) ≤ β(t+ s)}

Intuitively, if β achieves the same value as α some s seconds
later, we can be guaranteed that any bits sent from the input
at time t experienced a delay of s seconds.

4.3.3 Queue Size
Sometimes called the backlog in the literature, the queue

size is the amount of built up data that has not yet exited S.
Define the queue size Qα,β(t) as

Qα,β(t) := α(t)− β(t)

which is simply the amount of data that has entered but not
exited S.

5. MODEL
We consider the original three-node network modeled as

a closed loop system in Figure 4. We make the simplify-
ing assumption that the acknowledgments sent back to the
destination follow an identical sequence of links. Although
in practice acknowledgements are significantly smaller, we
will model the acknowledgment process by assuming that
the originally sent data is passed through back to the source.
By Lemma 1, we can concatenate any arbitrary sequence of
network elements and represent the process as a single ele-
ment with a single service curve.

We denote PS as the service curve representing the path
from the Source (Src) to the Destination (Dst) and PD as
the service curve representing the path back from the Des-
tination to the Source. The joint pathway is represented as
P = PS ∗ PD. Throughout our analysis we will assume
that the source process is an infinite data stream with data
instantaneously available (Src(t) = +∞ for all t).

As Figure 4 illustrates, α is the input service curve de-
scribing incoming traffic leaving the source and entering the
network. β = α ∗ P is the output network service curve,
which the window processW : R+ → R+ uses to estimate
a window size.

LEMMA 2. The network input process α in the closed
loop with the window controller is α = β +W . The input
process α is recursively specified α = α ∗ P +W .

PROOF. By the definition of a window process W , we
require that the inflight data is upper bounded by W . As-
sume that the process is optimal, and we can achieve equal-
ity: Qα,β =W . T is the throttling process that is influenced
byW . Since α = Src∧T , we have Src∧T−β =W . Lastly,
since Src is assumed to be an infinite data stream with instan-
taneous availability, we can simplify Src∧T −β =W to get
T = β +W . Substitute this definition into α, again apply-
ing the definition of the Src data process, and we achieve the
stated result for α. To get α = α ∗P +W , we just substitute
β = α ∗ P . This result is similar to the result presented in
Section B. of [1]

5.1 BBR Estimation Processes
We now define the BBR estimation process using service

curves with a few simplifying assumptions. We approxi-
mate the BBR Bandwidth estimation process, assuming that
BWEst is windowed over time rather than packets. We also
assume that the valid range for both RTT and Bandwidth
estimates are the last 10 seconds. This is partially consis-
tent with BBR. BBR RTT estimates are valid for 10 sec-
onds, while no such constraint is placed on the bandwidth
estimate, which updates more frequently and uses a window
over packets.

Let WindowBW be the window over which BBR computes
the bandwidth estimate. Then define the bandwidth estima-
tion process BWEst(t) and the round trip time estimation
process RTTEst(t) as follows:

BWEst(t) := sup
0≤δ≤10

TptWindowBW
(t) (1)

RTTEst(t) := inf
0≤δ≤10

Dα,β (t− δ) (2)

W(t) := g · RTTEst(t) · BWEst(t) (3)

Each of these quantities can be estimated using just α and
β, the input and output service curves. Technically,W(t) :=
min {g · RTTEst(t) · BWEst(t),Wmax}whereWmax is the max-
imum possible window size, but the simplification in (3) does
not affect our analysis.

5.2 BBR State Dynamics
We are specifically interested in studying the steady state

dynamics of BBR. In the steady state, BBR transitions through
just the ProbeBW and ProbeRT cycles. In these two states,
the dynamics are easier to study because the only change in
behavior is in the process W . For the ProbeBW cycle, the
gain g switches from 1, 1.25, and 0.75 with each gain phase
lasting for a single RTT. ProbeBW continuously switches
through the 8-gain cycle for 10 seconds. For the ProbeRT
cycle, theW process is fixed to be just 4 packets (32k bits)
for a duration of 200ms and a single RTT. Thus, our model
is sufficiently detailed to study the steady state behavior of
BBR.

5.3 Network Parameters
Finally, we define our notation for the network parameters.



We let L0
d0,b0

denote the service curve for the link from the
source to the middle router, and L1

d1,b1
denote the service

curve for the link from the router to the final destination. We
assume that the service curves are identical for the reverse
path. Thus, PS = L0

d0,b0
∗L1

d1,b1
, and PD = L1

d1,b1
∗L0

d0,b0
.

We also make a significant assumption that routers have in-
finite queues that do not drop packets; an admittedly large
assumption.

6. ANALYSIS
The full model of BBR’s window process using service

curves, presented in equations (1), (2), and (3), is compli-
cated to analyze. We walk through simplifications ofW be-
fore arriving at a final result. In order to make these conclu-
sions, we first state two critical results from [1] that we will
make use of in our analysis.

LEMMA 3. SupposeW(t) = W̄ where W̄ is an arbitrary
constant. Then there is a unique process ᾱ satisfying α ≤
α ∗P + W̄ where ᾱ is guaranteed a maximum service curve
S̄W := ∧∞m=0

(
P + W̄

)(m)
where

(
P + W̄

)(m)
denotes the

m-fold convolution of
(
P + W̄

)
with itself. That is, ᾱ ≤

Src ∗ S̄W

LEMMA 4. SupposeW(t) = W whereW is an arbitrary
constant. Then there is a unique process α∗ satisfying α ≥
α∗P+W where α∗ is guaranteed a minimum service curve
SW := ∧∞m=0 (P +W )

(m) where (P +W )
(m) denotes the

m-fold convolution of (P +W ) with itself. That is, α∗ ≥
Src ∗ SW

PROOF. Both Lemma 3 and Lemma 4 are the results of
applying Corollary 18 and Corollary 19 in [1] to our set-
ting.

6.1 Constant BWEst, Constant RTTEst, Constant
gain g = 1

LEMMA 5. Suppose the following conditions hold: (1)
BWEst is fixed as BWEst(t) = C, (2) RTTEst is fixed as
RTTEst(t) = RTTtrue, (3) the gain g is fixed to 1, (4) the bot-
tleneck bandwidth is B, and (5), the ProbeRT window size is
WRT = 3.2 · 104. Then for the network with service curve P ,
the input service curve α is:

αBW,C≥B(t) =

{
t ≤ R : CR
t > R : (C −B)R +Bt

αBW,C≤B(t) =


t ≤ R : CR
nR < t ≤ nR + CR

B : nR(C −B) +Bt

nR + CR
B < t ≤ (n+ 1)R : (n+ 1)CR

where R is an abbreviation of RTTtrue, n is an arbitrary inte-
ger in N, and C ≥ B and C ≤ B specify the conditions for
the appropriate α. For the ProbeRT cycle, the input service
curve α is given by substituting the constant C = WRT/R
into αBW,C≥B(t) and αBW,C<B(t) to get the service curves
αRT,WRT≥BR(t) and αRT,WRT<BR(t).

PROOF. With assumptions (1) and (2) on BWEst and RTTEst
respectively,W is a fixed constant during the ProbeBW cy-
cle;W(t) = C ·RTTtrue. The BBR dynamics also fixW(t) =
WRT for the ProbeRT cycle. As stated in Lemma 2, the input
service curve α satisfies the equation α = α ∗ P +W . Sec-
ondly, since α = α∗P+W , the conditions of both Lemma 3
and Lemma 4 hold with S̄W = SW . Thus, α = Src∗SW and
since Src is defined as an infinite data stream instantaneously
available, α = SW .

We first consider the ProbeBW cycle, considering the two
cases C ≥ B and C ≤ B separately (Note that both service
curves are the same when C = B). We denote these service
curves as αBW,C≥B and αBW,C≤B . We compute SW (and
therefore α) in the two cases by applying the m-fold convo-
lution and taking the pointwise minimum to obtain the speci-
fied service curves. Now we can consider the ProbeRT state.
Note that our results for αBW,C≥B and αBW,C≤B hold for an
arbitrary constant C with fixed window size CRTTtrue, so we
can substitute the value C = WRT/R into the results above.
This lets us apply the results for αBW,C≥B and αBW,C≤B by
substituting C = WRT/R.

THEOREM 1. Suppose that conditions (1-5) from Lemma
5 hold. Additionally, assume (6) the duration of the ProbeRT
state is TRT, (7) the duration of the ProbeBW state is TBW,
(8) C ≤ B, and (9) WRT ≤ B · RTTtrue.

Then the average throughput is a constant given by

Tpt =
TBWC + TRTWRT/RTTtrue

TBW + TRT

The time varying source to destination delay is

Dα,Dst(t) :=
RTTtrue

2

for both the ProbeBW and ProbeRT cycles. The queue size
at the middle router is 0 for both the ProbeBW and ProbeRT
cycles.

PROOF. Since the conditions of Lemma 5 hold, we can
apply the stated results of Lemma 5 to obtain the input ser-
vice curve α for any cycle and for the case C ≤ B. Apply
the definition β = α ∗ P (or Dst = α ∗ P1) and we have the
corresponding output service curve. Then we can recover the
stated results by applying each of the three definitions from
Section 4.3 on the Quality of Service metrics. While the
overall approach is straightforward, there are many details in
the full proof, so we leave it to Appendix B.2.

Before we proceed to more complicated settings, we first
discuss the preliminary results here. A reader may notice
that we ignore the case C > B in Theorem 1. As we will
show in Section 6.3, the assumption of fixed dynamics is not
compatible with the assumption C > B. C > B results in
an oscillatory estimate process RTTEst(t); the dynamics are
specified in Lemma 6.

Theorem 1 shows that conservatively underestimating the
bandwidth as C ≤ B results in a slight throughput loss dur-
ing the ProbeBW state while guaranteeing optimal latency



and queue sizes throughout BBR’s execution. Finally, and
most importantly, Theorem 1 shows that even in this very
simple setting, we already see the effect of long latencies on
reducing throughput. With TBW fixed to 10 seconds in BBR,
and TRT typically set to TRT = 0.2+RTTEst(t), the through-
put Tpt(t) will be interpolated between C and WRT/RTTtrue,
decreasing as RTTEst(t) increases.

6.2 Constant Inaccurate Estimates
The analysis in Lemma 5 and Theorem 1 is more general

than initially implied because the results only depend on the
window process W . Instead of restricting possible error to
the bandwidth estimate BWEst, we assume multiplicative er-
ror and arbitrary nonzero gain g, showing that a result similar
to Theorem 1 holds.

COROLLARY 1. Suppose the following conditions hold:
(1) the bottleneck bandwidth is B, (2) BWEst is constant as
BWEst(t) = C1B, (3) RTTEst is constant as RTTEst(t) =
C2RTTtrue, (4) the gain g is nonzero, and (5) the ProbeRT
window size is WRT satisfying WRT < B · RTTtrue. Define
C = C1C2g and assume (6) C ≤ 1.

Then the average throughput is a constant given by

Tpt =
TBWCB + TRTWRT/RTTtrue

TBW + TRT

The time varying source to destination delay is

Dα,Dst(t) :=
RTTtrue

2

for both the ProbeBW and ProbeRT cycles. The queue size at
the middle router is 0 for both ProbeBW and ProbeRT cycles.

PROOF. The full proof is in Appendix B.3. The general
idea is that we can reframe conditions (1-4, 6) as the condi-
tions of Theorem 1 and then apply Theorem 1.

6.3 Full Dynamics with Fixed Network

LEMMA 6. Suppose that the following conditions hold:
(1) the bottleneck bandwidth is B, (2) BWEst is a constant
BWEst(t) = C1B, (3) the initial RTTEst estimate isC2RTTtrue,
(4) the gain g is nonzero, (5) the ProbeRT window size WRT

satisfies WRT < B · RTTtrue, and (6) C > 1 where C =
C1C2g.

Define T (k)
RT as the duration of the ProbeRT state the kth

time BBR enters the ProbeRT state. Define RTTEst(k) as the
RTT estimate after the kth occurrence of the ProbeRT cycle.

Then RTTEst(k) has initial estimate

RTTEst(0) = C2RTTtrue

and evolves as

RTTEst(k) = max

{
C1g · RTTEst(k−1) − T

(k−1)
RT

(
1−

WRT

RTTtrueB

)
,RTTtrue

}

with T (k)
RT defined as T (k)

RT = 0.2 + RTTEst(k).

PROOF. Proof in Appendix B.4.

Lemma 6 shows that when considering the full dynamics,
overestimating the bottleneck bandwidth or RTT has a dou-
bly damaging effect. Not only does overestimating increase
C resulting in throughput reduction as already showed in
Theorem 1, but it also increases the overestimation of RTTtrue.
These effects can cascade and result in secondary increases
on delay and queue sizes while decreasing throughput through
a cycle of incorrect RTT estimates leading to longer times for
TRT.

Further analysis beyond the specification in Lemma 6 is
difficult. Unlike Theorem 1, finding a closed form expres-
sion is challenging because Lemma 6 includes the max oper-
ator. Nonetheless, we can still derive upper and lower bounds
for the relevant results with some reasonable assumptions to
obtain Theorem 2.

THEOREM 2. Suppose that the following conditions hold:
conditions (1-5) from Lemma 6 and let C = C1C2g. Denote
bounds for the average throughput, delay, and queue size
as follows: Tpt is bounded as Tpt ≤ Tpt ≤ Tpt, the de-
lay Dα,Dst(t) is similarly bounded as Dα,Dst ≤ Dα,Dst(t) ≤
Dα,Dst, and the queue size at the middle router Q1(t) is
bounded as Q1 ≤ Q1(t) ≤ Q1. Then the bounds are:

Tpt =
TBW min{CB,B}+ (0.2 + RTTtrue)WRT/RTTtrue

TBW + 0.2 + RTTtrue

Tpt =
TBW min{CB,B}+ (0.2 + max{C, 1}RTTtrue)WRT/RTTtrue

TBW + 0.2 + max{C, 1}RTTtrue

Dα,Dst(t) =
RTTtrue

2

Dα,Dst(t) = RTTtrue max

{
C −

1

2
,
1

2

}
Q1 = 0

Q1 = max{C − 1, 0} ·B · RTTtrue

PROOF. The full proof is in Appendix B.5. To prove The-
orem 2 we consider both C ≤ 1 and C > 1, using the results
of Lemma 5, Corollary 1, and Lemma 6. Then we apply the
Quality of Service metrics from Section 4.3.

6.4 Empirical Comparison
We can check how the theoretical results derived in Sec-

tion 6.3 hold on a real instance of BBR. Revisiting our first
experiment in Section 2, we compare our theoretical bounds
in Theorem 2 to the empirical results presented in Figure 2 in
Section 2. Figure 5 matches Figure 2 qualitatively in key as-
pects. The theoretical bounds predict bottleneck utilization
dropping off at 100ms latency on the bottleneck link. And in
both figures, we see that lower bandwidth links have slightly
higher utilization then higher bandwidth links. Yet closer
examination reveals that the computed results differ signif-
icantly - Figure 5 predicts a little over 80% utilization of
the bottleneck with 1 second latency on the bottleneck link.
In contrast, the actual results show that BBR only achieved
around 60-70% utilization in an identical setting. It is likely
that the additional underutilization comes from the slow start
which takes a much higher proportion of the experiment as
RTTtrue increases.



In a separate experiment, we fix the bottleneck delay to
5ms and the bottleneck bandwidth to 1Mbps (results shown
in Figures 6 and 7). We now consider the RTTEst(k) dy-
namics predicted by Lemma 6. In the first stage, although
C2 ≈ 1, C1 > 1, so this creates an oversized congestion
window with C > 1. It is immediately clear from Figure 6
that the dynamics predicted by Lemma 6 are present qual-
itatively. After the first ProbeBW cycle, RTTEst is never
measured accurately and continues to oscillate away from
the true value. This results in an oversized windowW , and
causes both delays and queue size (shown in Figure 7) to
grow. However, while Lemma 6 estimates the first RTTEst
jump correctly (estimate of 1.6RTTtrue), it does not estimate
future evolutions correctly: RTTEst(k) stabilizes in our em-
pirical results while Lemma 6 predicts continued growth.

Like throughput, the upper bound for Queue Size Q1 ap-
pears to have the right relationship (increasing with C), but
the wrong numbers. Using recorded measurements, we can
take C ≈ 1.75 after t = 20 (C1 = 1.05, C2 = 1.66). Apply-
ing the boundQ1 from Theorem 2 yields an estimated queue
size upper bound of 22500 bits, or roughly 3 packets. This is
significantly different from the observed queue sizes in Fig-
ure 7 (although curiously, the difference between the initial
queue size when RTTtrue is correctly estimated and the queue
size after t = 20 seconds is in fact about 3 packets).

6.5 Discussion
In summary, the analytical results were consistent quali-

tatively with empirical evidence, but not consistent numeri-
cally. Qualitative results are not entirely pointless. The re-
sults here suggest two opportunities to improve BBR’s through-
put decay over long latencies. One is to keep a constant
ratio of TBW : TRT so that the overhead of the ProbeRT
state is constant even during long latencies. Another alter-
native is the approach taken by the original authors of the
BBR team in the follow up work [5], where WRT is set to
0.5BWEst(t) ·RTTEst(t) instead of 3.2 ·104. One drawback
of this approach is that it is unclear how robust such an al-
gorithm would be to mismeasurement. While our empirical
studies suggest tolerance to a congestion window oversized
by a factor of 2, our theoretical results show the possibility
that such a window would create continued queue build up.
It is possible that the other modifications of BBR v2 in [5]
remedy these issues, but this would need further analysis.

7. CONCLUSION
We have presented three different methods for modeling

and analyzing BBR. The Network Calculus was the most
tractable framework, and led to a number of theoretical char-
acterizations of BBR regarding throughput, queue size, and
delays, that were shown to hold qualitatively. However, closer
inspection revealed that many of these results were numeri-
cally inaccurate, highlighting a few shortcomings of the Net-
work Calculus approach.

Working in the Network Calculus framework was tedious.
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Deriving precise bounds depends on one’s willingness to rig-
orously model and convolve service curves, which is often a
manual approach for the types of piecewise functions that
are useful. Added effort does not guarantee model accuracy
either, as this precision comes at the price of model bias.
The stochastic network calculus outlined in [12] may be a
promising alternative that adds some needed flexibility to the
network calculus framework.

A more general issue that arises from using the Network
Calculus is the inability to use data driven methods. While
the hybrid systems approach did not work appropriately in
our setting, it is possible that more carefully recording inter-
nal state data along with a few well chosen inductive model
biases would help data driven methods for hybrid systems
yield useful models.

Data driven approaches using hybrid systems are espe-
cially desirable because of the large arsenal of control the-
oretic analysis tools for these types of systems. The type of
analysis done for the RTTEst dynamics in Lemma 6 is func-
tionally similar to a control theoretic analysis. We studied the
long term trajectory of the RTTEst process, with the aim to
find parameters and check whether the BBR algorithm would
stabilize RTTEst to the true value RTTtrue. Unfortunately,
while the initial aim of this project was to achieve a control
theoretic analysis of BBR, the Network Calculus framework
lacked these tools. A data driven control theoretic analyzer
would be an invaluable tool for studying congestion control
algorithms.
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APPENDIX
A. HYBRID SYSTEMS

A.1 A detailed Max Plus model
As we showed in Section 4, there are alternative definitions

of the max/min plus framework where the Max Plus algebra
is defined over service curves rather than the reals (R). A few
papers, such as [3] successfully use the Max Plus framework
instead of service curves.

We experiment with the model proposed by [3]. Let i
vary from 0 to 2 (for the source, midpoint router, and des-
tination). Let yi(n) be the departure time of the nth packet
from i. Let Y (n) = (y0(n), y1(n), y2(n))T , or a vector
representing the departure times at all routers. Finally, let
Z(n) = [Y (n)T , Y (n−1)T , ...Y (n−Wmax+1)T ]T , a vector
representing all the departure times of the lastWmax packets
whereWmax is the maximum possible window size.

Finally, let M(n) be a matrix describing induced delays
from Y (n− 1) to Y (n). For any two routers i, j, the depar-
ture time of packet n from router j affects router i only if j ≤
i. This leads to the definition [M(n)]ij =

∑i
k=j σk(n) +∑i−1

k=j dk,k+1. Here, di,i+1 is the delay (ex 1 ms) while
σk(n) is the service time, inversely proportional to the avail-
able bandwidth. We define AW (n) identically as [3].

Finally, the window process W(n) is determined by the
gain and rolling estimates of the RTT (denoted RTTEst) and
bandwidth (denoted BWEst). Combining these estimates.
The model generalizes to K routers in sequence.

Z(n) = AW (n)Z(n− 1)

W(n) = min{gain ·RTTEst(n) ·BWEst(n),Wmax}
RTTEst(n) = min

1≤j≤RttEstWindow
{Y2(n− j)− Y0(n− j)}

BWEst(n) = max
1≤j≤BWEstWindow

{
n− j −W (n− j) + 1

Y0(n− j)− Y2(n−W(n− j))

}



B. NETWORK CALCULUS AND SERVICE
CURVES

B.1 Proof of d,b(t) definition
To see why Ld,b(t) is defined as

Ld,b(t) :=

{
t ≤ d 0

t > d b(t− d)

and how this definition arises from the convolution δd ∗ λb,
we can proceed as follows. First, suppose t ≤ d. δd is 0
everywhere on the domain [0, t], so when we consider the
convolution (δd ∗ λb)(t) := infs:0≤s≤t{δd(t − s) + λb(s),
the term δd(t − s) is 0 everywhere for all s. On the other
hand, the quantity λb(s) is clearly minimized at s = 0. This
gives us the first condition. Now consider when t > d. In
this setting, t − s ≤ d, or the term δd(t − s) will be +∞.
So s ≥ t − d. For s ≥ t − d, δd(t − s) is 0 everywhere, so
we can pick the s that minimizes bs, which is when we take
equality of the bound s ≥ t− d. This yields b(t− d), giving
the second part of the convolution.

B.2 Proof of Theorem 1
First we examine the throughput. Since we have found the

input service curves α that satisfy the desired closed loop
system equation α = α ∗ P + W , and the output service
curve of the network element is β = α ∗ P , we can now
compute the average throughput of the two phases. Since
assumption (8) states C ≤ B and (9) states WRT ≤ BR,
we only need to consider the service curves αBW,C≤B and
αRT,WRT≤BR. Evaluating the output service curve β = α∗P ,
observe that βBW,C≤B = αBW,C≥B − CR (except at t = 0)
and similarly βRT,WRT≤B·R = αRT,WRT≤B·R −WRT.

Since C < B (assumption (8)), the average throughput
during the ProbeBW cycle over a single R is C, which can
be verified by examining βBW,C≤B . Similarly, the average
throughput during the ProbeRT cycle can be verified asWRT/R.
To compute the average throughput in the limit, we take the
time weighted average throughput of a complete state cycle
(which corresponds to concatenating the input service curves
and studying the result) using assumptions (6) and (7) for the
durations of the ProbeRT and ProbeBW cycles. This yields
the stated result for Tpt. Note that we can ignore the initial
R seconds where β is 0 since this is negligible in the limit.

Next, we can evaluate the delay Dα,Dst. Since for any time
t such that t ≥ R, both α and Dst = α ∗ P1 have identical
slopes, it suffices to compare the horizontal distance at any
time t ≥ R. We can solve for t∗ such that α(R) = α∗P1(t∗),
then subtract R from t∗ to get the stated result. Note that
this estimation process holds for both αBW and αRT. Since
C < B, the delay is at least R/2.

Lastly, the queue size can be estimated by recognizing that
at the middle router, the output service curve has a larger
slope than the input. I.e., L1

d1,b1
has a larger slope than α ∗

L0
d0,b0

. This implies that any queue build up at the middle

router will be transient and drained rapidly. This yields the
estimated queue size of 0.

B.3 Proof of Corollary 1
Consider the window (a constant):W = C1C2gBRTTtrue.

We let the C from Theorem 1 be the quantity C1C2gB. By
assumption (6), C1C2g ≤ 1 so C1C2gB ≤ B. Thus, the
window W with the conditions assumed in Corollary 1 is
the same as the window W with the conditions assumed in
Lemma 1. The only difference is that TRT is now 0.2 +
C2RTTtrue instead ofC2RTTtrue. Thus, we’ve verified that all
conditions of Theorem 1 hold with any differences reflected
in the quantity TRT. Apply the stated reframing of conditions
(1-4, 6) (C = C1C2gB), and we obtain Corollary 1.

B.4 Proof of Lemma 6
The result can be inductively proven, applying the BBR

estimation process to the transitions between ProbeBW and
ProbeRT cycles. The initial estimate RTTEst(0) is C2RTTtrue
by assumption (3). Observe that the congestion window be-
fore entering the kth ProbeRT cycle is C1gRTTEst(k).

Now consider the kth time that BBR enters the ProbeRT
cycle. By definition, the current estimate for RTT is RTTEst(k−1).
We consider the RTTEst process, defined in (2) as

inf0≤δ≤10Dα,β (t− δ), applied during the ProbeRT se-
quence. The duration of the ProbeRT sequence is T (k−1)

RT ,
at which point the input rate increases due to a new window
size C1gRTTEst(k).

Thus, at the end of the ProbeRT cycle, after T (k−1)
RT sec-

onds have elapsed, is when the RTT estimate will achieve
its minimum. The total bits put into the system by α is
h = WRT

RTTtrue
· T (k−1)

RT . The output service curve will be no
faster than B, so the time taken to output the additional h
bits is WRT

BRTTtrue
· T (k−1)

RT . The initial delay when the output
service curve receives the first bit sent by the ProbeRT cy-
cle is C1gRTTEst(k−1). Thus, the minimum estimate will be
C1gRTTEst(k−1) − T (k−1)

RT + WRT
BRTTtrue

· T (k−1)
RT , the first part

of the expression for RTTEst(k).
If the output service curve is restricted by the input α slope

before reaching T (k−1)
RT seconds, then the delay must achieve

the minimum possible time of RTTtrue seconds. Combining
the two possible minimum estimates yields the stated result.

B.5 Proof of Theorem 2
First, we look at throughput. Consider the case when C ≤

1. In this setting, the conditions of Lemma 5 and Corollary
1 are met and we apply those results directly. The RTTEst
does not fluctuate, so the bounds are tight, and Tpt = Tpt.
Now suppose that C > 1, so all assumptions of Lemma 6
are met. It’s clear that a lower bound of RTTEst(k) is RTTtrue
from the definition. But it’s less clear how to extract an upper
bound. If we ignore the minimum, observe that RTTEst(k) is



a recurrent sequence with closed form expression

RTTEst(k) ≤RTTEst(0)
(
C1g − 1 +

WRT

BRTTtrue

)k

− 0.2

1−
(
C1g − 1 + WRT

BRTTtrue

)k
WRT

BRTTtrue
− C1g


Assuming the quantity C1g−1 + WRT

RTTtrueB
≤ 1, we can up-

per bound RTTEst(k) as C1gC2RTTtrue = CRTTtrue. Hence,
using upper and lower bounds for RTTEst(k), we can derive
upper and lower bounds for TRT.

Finally, we observe that the only change to our proof for
throughput bounds in Theorem 1 is that the throughput dur-
ing ProbeBW is restricted toB. Thus, combinining the upper
and lower bounds for TRT, the restriction ofB for throughput
during the ProbeBW cycle, we obtain the stated bounds Tpt
and Tpt.

Next, we look at the delay Dα,Dst(t) and queue size of the
middle node Q1. A lower bound of the delay can be derived
by applying the results Dα,Dst(t) = RTTtrue/2 and Q1 = 0
when C < 1. Now consider the case C > 1 to obtain
an upper bound. Since the node 1 is where the bottleneck
begins, we can look at the difference between the service
curves when C = 1 and when C > 1. When comparing the
service curves αBW,C=1 ∗PS and αBW,C>1 ∗PS , we can see
that the only difference is a vertical shift by (C−1)BRTTtrue.
This vertical distance is the additional queue size, providing
the upper bound Q1. To determine the horizontal shift, di-
vide by B and we obtain (C − 1)RTTtrue. This is the added
delay on top of RTTtrue, so we can upperbound the delay as
RTTtrue · (C − 1/2). This completes the proof.
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